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SUMMARY 

By assuming a general mechanism for surface reactions on a chromatographic 
column, equations are derived from which can be calculated the elution curves of 
the reactant, the products and the peaks produced by stopping the carrier-gas flow 
for a short time. Particularly, the area under the curve of these stop-peaks can be 
calculated as a function of the time of cessation of the gas flow, and this can be used 
to determine, from experimental values, the rate constants of the surface reactions. 
Application of the method requires specification of the mechanism assumed in each 
case. As an example, the equations derived are applied for a simple first-order non- 
opposing reaction on one kind of active sites, with no intermediate_ In this limiting 
case, two of the final equations coincide with the results of earlier static derivations. 

INTRODUCTION 

Stopped-flow gas .chromatography was introduced in 1967i and can now be 
used to study the kinetics and mechanism of surface reactions, or to determine rate 
constants for desorption from two kinds of active sites of a surface, toiether with 
the corresponding partition coefficients’*3. The application of the method is very 
simple. A conventional gas chromatograph with a high-sensitivity detector, e.g., a 
flame ionization detector, is equipped with one or two shut-off valves and a pressure 
stabilizer (such as a volume reservoir) in the carrier-gas line. After introduction of a 
small amount (ca. 1 mg) of the vapour under study on to the chromatographic 
column containing the catalyst or other solid material, the flow of carrier gas is stopped 
and then re-started after a known time; this procedure is repeated, noting the exact 
time of each stop. Sharp symmetrical peaks (the stop-peaks) follow the restorations 
of the carrier-gas flow, and these peaks have definite retention times and “sit” on the 
continuous chromatographic signal (see, e.g., Fig. 1 in ref. 3). 

The area under the stop-peaks is a finite function of the time when the corre- 
sponding stop was made, and, if the analytic form of this function is known, we can 
calculate rate constants and other physical quantities from the chromato_mm. The 
analytic form of this function depends on the phenomenon being studied, its detailed 
mechanism, and other factors. We have derived this function for the case of slow 
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desorptibn of a substance adsorbed on two kinds of sites of an active surface, without 
chemical reactionj. 

For catalytic reactions, two derivations have been made1s4; in each, a simple 
first-order surface reaction was assumed to take place under static conditions. How- 
ever, extensive application of the stopped-flow technique in this laboratory, some 
results of which have been reported %‘, has shown that the analytic function men- 
tioned above can be complicated, obviously because of a complex reaction mechanism 
and/or the dynamic character of the chromatographic process. We therefore decided 
to derive the various chromatographic equations and the above-mentioned function 
for a fairly general mechanism and a flow system, and then to show that the results of 
previous derivations’*4 coincide with that of a limiting case of the function pertinent 
to this general mechanism. 

THEORETICAL ANALYSIS 

The following general mechanism is assumed to describe most cases of stopped- 
flow chromatography with chemical reactions taking place on the surface of the 
column material: t 

L 

A + S”’ 
ky ’ 

z+ A-P k~I, 
k’l’ 

B_S”’ _$ D-S”’ f D +,_ S”’ 
-1 

A 

_. 
_t $92’ 

k:*’ 
A-S’2’B=, 

-1 

kc*’ 

B-S= ?+ D-SC2’ D S'2' 

s= surface adsorbed species gases 

The surface is assumed to contain one or more kinds of active sites, S(l), 
S'2' 

3 ---, P, which are responsible for chromatographing the reactant A and the 
products D, . . _, X, as well as for the chemical reactions of the adsorbed species. 
The same product, e.g. D, may be produced and/or chromatographed on more than 
one kind of active sites. The concentration of the various kinds of sites is considered 
to be large compared with those of the respective adsorbed species, in view of the 
very small amounts of the reacting vapours being used. Additional assumptions made 
are: 

(1) The adsorption isotherm is linear for all kinds of sites. 
(2) Axial diffusion of the gas in the bed is negligible, which is not unrealistic 

for high enough flow-rates. 
(3) The reacting vapour is introduced at the inlet end of the column as an 

instantaneous pulse, the distibution in time of which can be described by a Dirac 
delta function, S(t). 
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(4) Equilibration of the reactants and products between the gas and the solid 
phases is instantaneous, i.e., chromatography is ideal. 

Notation 
cA, CD = concentrations of A and D in the gas phase (mole/cm3) 

CA, G = Laplace transforms of CA and c, with respect to t 

4% = increase in gas-phase concentration of D during the stopped-flow 
interval (mole/cm3) 

;2; 
= Laplace transform of dc, with respect to t 

. = double Laplace transform of dc, with respect to t and t’ 

2 

= area under elution curve of A (mole) 
= area under the curve of a stop-peak (mole) 

g = fraction of A in the adsorbed form (dimensionless) 
k:“, k’_‘i, k:” = rate constants for reaction on sites i (set-3 

= partition ratios of A and D on sites i or i (dimensionless) 

= partition coefficients of A and D on sites i or i (dimensionless) 
= length of column (cm) 
= total mass of A injected (mole) 
= integrals defined by eqn. 17 
= transform parameters with respect to t and t’ 

= concentrations of adsorbed species A-S”), B-S”), D-S”) on sites i or 
i per unit volume of solid (mole/cm3) 

= Laplace transform of 4:’ with respect to t 
= volume ratio of solid and gas phases 
= time interval from the injection of A to the beginning of the 

stopped-flow interval (set) 
= gas hold-up time (set) 
= retention times of A and D (set) 
= stopped-flow time (set) 
= time measured from the end of the stopped-flow interval (set) 
= linear velocity of carrier gas in interparticle space (cm/set) 
= volume of the carrier gas passed through the column (cm’) 
= volume flow-rate of carrier gas (cm’/sec) 
= distance from inlet end of column (cm) 
= expression defined by eqn. 32 
= expression defined by eqn. 12 
= expressions defined by eqns. 10, 11 and 24, respectively. 

Other symbols are defined as they occur in the text. 
We artificially divide the time variable into three intervals, t, ts and t’, defined 

above and shown in Fig. 1. In each interval, the various concentrations (as functions 
of time and distance X) zre determined by one or more differential equations with 
certain initial and/or boundary conditions. The problem will be considered separately 
for each of the three intervals. 
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Fig. 1. Ideal variation of carrier-gas linear velocity, Y, with time in the stopped-fiow technique. 

Interval t 
The concentrations cA(-y,r), &’ (xJ), and c,(x,t), where i = 1,2, _ _ _ n, are 

determined by the following system of equations. 
Mass balance for A and A-W): 

acA -y- - 
ax 

r ;: k:“&i) + r 2 kii$&i) 

f=l f=l 

Rate of change of B-W: 

aq:) -= 
at 

k:“+$ _ ky;# _ k:“)& 

Mass balance for D and D-!P: 

where the index j applies to all sites producing D and/or equilibrating with it. 
Initial and boundary conditions: 

Atx=O, c*=+(t) 

Atx>Oandt=O, c,=q~‘=c,=O 

Adsorption isotherms : 

(2) 

(3) 

(4) 

(5) 

By substituting these expressions for q:’ and qg’ in eqns. 2,3 and 4, taking the 
Laplace transform with respect to t of the resulting three equations under the initial 
conditions 5, and then combining the three transformed equations, we obtain: 
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ii+, = (1 +- Zkg')p 
j 

(10) 

(11) 

and kz’ = rKg’, kg’ = rK2 are the partition ratios of A and D, respectively, for 
the active sites i and j. 

The solution of eqn. 7 with respect to x, subject to conditions 5, is: 

Q*X 
CA = $- exp(- 7) (13) 

if this is substituted for CA in eqn. 9 and the resulting equation is solved, e.g., by 
Laplace transformation with respect to x, we obtain: 

exp(-Q&/v) - exp(-cAx/v) 

QA -Q, (14) 

We are interested in the chromatographic signals of A and D at the detector, 
which are c&t) and c&t), and these can be found by putting x = I (so that x/v = 
I/v = tM) in eqns. 13 and 14, and taking the inverse Laplace transforms with respect 
to p_ Thus: 

exp( -%h) - exp(-QAh) 

Q* --9, I (16) 

Evaluation of these inverse transformations for the general case is difficult, 
but they can be easily found for a number of special or limiting cases, one of which is 
discussed later in this paper. Further, one can find for the general case the charac- 
teristics of the elution curve, from the statistical moments m,, calculated by means 
of the well-known property of the Laplace transform: 

s m 

m, = P c(l,t)dt = (-1)” lim d”lC(M 

0 (R-+0) dP” 

Thus, the area under the elution curve of unreacted A is 

(17) 

fA = J; c,dV= P c,dt = i?rn,, = m-exp 

1 
(18) 
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Two interesting special cases arise when all values of k:” = 0, i.e., no products are 
formed, and when all values of k 2: = 0, i.e., non-opposing reactions occur. In the 
tist case,f, = 111, i.e., all of the injected vapour is eluted. In the second case, fA = 
nz-exp(-Tk:“k$,?,), i.e., the amount of reactant A is diminished according to a 
first-order law, since kz’t,, is the adjusted retention time, tg.2, and therefore the 
contact time the substance would have if only sites i were present. 

The mean retention time of A is given by 

t 
ml. 

R.A = - = 1 
m. 

+ Xkk” f 
k<f’k’“k”’ 

I (k”;; ,@,, t&l 1 (1% 

and therefore depends on the various rate constants. Only when k’l: = 0 (non- 
opposing reactions) or ky’ = 0 (no reaCtiOn) is tRsA = (1 + Ekz’)tA,, i.e., the expected 
ideal retention time. 

Interval ts 

If this stopped-flow interval is very small, the various concentrations are 
approximately governed by eqns. 2, 3 and 4 with a’ = 0 and t = ts. The initial con- 
ditions are now the inverse Laplace transforms of eqns. 13, 8 and 14 for c& qBCi) 
and c,, respectively. It is necessary to keep ts very small, so that the effects of longi- 
tudinal diffusion are minimized during this interval. Whenever the stopped-flow 
technique was used by us’-‘, the stop-peaks obtained were very narrow, indicating 
that the effects of longitudinal diffusion can be made negligible. 

With the interval r, sufficiently small, we can make another approximation, 

which, although not absolutely necessary, keeps the calculations simple. This is to 
assume that CA and qBci’ do not change appreciably during the interval ts_ Then, the 

onby mass balance required is that of D and D-S”): 

(20) 

After substitution of the isotherm 6 for 4:’ and integration with respect to ts, 
we obtain: 

Thus, AC, is the increase in concentration of D in the gas phase during the stopped- 

flow interval t,. It is noteworthy that dc,, is also a function of x and t, having the 
same distribution in these variables as 42’. Therefore, by forcing dcb out of the 
column, one can see the actual distribution of 4:’ at the time t when the stop was 
made, distorted only by the chromatographic process on D. This is the role of the 
next time interval_ 
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Inter vai t’ 
This starts by restoring the flow of carrier gas at the end of the stopped-flow 

interval t,. Here we are interested only in AC, at the detector, i.e., at x = 1. We can 
imagine that at t’ = 0 a distribution in co described by eqn. 21 is introduced into 
the column, and it is chromatographed with the same partition ratios k<,i’. Thus we 
can write the mass balance: 

(22) 

A double Laplace transformation, first with respect to t’ (with initial condition 
eqn. 21) and then with respect to t, gives: 

(23) 

where 

. (24) 

If eqn. 13 is now substituted for C, in eqn. 8, and the resulting expression is 
substituted for Q’,’ in eqn. 23, the latter can be integrated with respect to x, giving 

AC, =+&Z+, - 
exp( -J&x/v) - exp( -QAx/v) 

?z?A -a;, (25) 

For x = I (Le., at the detector), this equation gives the double Laplace trans- 
form (with respect to t and t’) of the stop-peak. It is only necessary to take the inverse 
transform, first with respect to p (included in @, and QJ, and then with respect top* 
(included in J&J, in order to find dc, = Ac,(t,t,,t’). This is the extra chromato- 
graphic signal above the continuous signal of D, which is due to a stop of the carrier- 
gas flow made at time t and having duration t,_ 

It is worth noting that eqn. 25 has exactly the same form as eqn. 14. which, 
on inversion, gives the continuous chromatographic signal of the product D. The 
important difference between the two equations, however, is that in eqn. 25 the time 
parameter is split into two independent parapeters p and p’, and this facilitates the 
inverse Laplace transformation_ Moreover, one can find the area under the curve 
of each stop-peak (jJ as a function of the time t of the corresponding stop of the 
carrier-gas flow, by using eqn. 17: 

Thus, from eqns. 26 and 25 

(27) 

This is as far as one can proceed with the general case. Further development of the 
equations requires an exact specification of the mechanism as dictated by experi- 





STOPPED-FLOW GC WITH CHEMICAL REACTIONS 309 

where t R.D = (1 +kD)tM IS the ideal retention time that D would have if it were 
injected directly on to the column, 

A= kA 

. 

tR.A 

I 

tR.A 

k, - k, = tXsA - t’Reo = t,., - t, (32) 
, D 

and u(t - tR) is the Heaviside unit step function, which is 0 for t < tR and 1 for 
t > tR, with tR > 0. 

For I < tRsD < tRsAs both terms Within the braces { > Of eqn. 31 are zero and 
co = 0, i.e., no signal is recorded at the detector. The first signal should appear 
abruptly at t = tRsD < tRR.& when the first term becomes 1, whereas the second 
remains 0. The maximum in the signal is therefore (co),,_ = mk,l/ < i.e., inversely 
prOpOtiiODd t0 p For tR.0 < t < tR,~, the signal decreases exponentially with t, 
so that, from eqn. 31 

(33) 

Thus, a plot of the logarithm of the height of the elution curve of D against t should 
be linear, with slope -klil. This conclusion coincides with the “simple elution tech- 
nique” of Phillips et all. 

Finally, when t > tRsA, both terms in eqn. 31 come into play, and again 
co = 0, as can be seen by substituting for 1 the expression on the far right of eqn. 32 
and performing the calculations. 

We consider next the most important eqn. 25, which, when x = Z, reduces to: 

AC, =+k,k, - exp(-tR.Dd - exp(-k&d - exp(-fR._dd 

(1 + Lb + k&A - (1 + kdp’ 
(34) 

Taking the inverse Laplace transform, first with respect to p and then with respect 
to p’, we find for t < tRR.A: 

Ac,(t,t,,t’) = $- tAlg - exp(-k,gt) . d[t’ - tRsD(l - &)I 

where g is the fraction of reactant A in the adsorbed form A-S: 

(35) 

and (1 +k,)/(l +kA) has been replaced by t&t&Q 
Eqn. 3.5 predicts the elution of a stop-peak, since dch has a non-zero value 

only when 

t’ = tR.0 1 - &) (37) 

which thus is the retention time of the stop-peak_ This retention time does not remain 
constant, but decreases as t increases and becomes zero when t = tR_A_ Only when 
t << tRsA is t’ % tR.0. i.e., the retention of the stop-peak is approximately equal to 
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the ideal retention time of the product D only when the stop is made early in the run 
or when the retention time of the reactant is very large. 

Finally, we find the area under the curve of the stop-peak as a function of t 
from eqn. 27, which here becomes 

giving 

_L = mL&g - exp(-kgt) Cl - u(t - t&I (38) 

where the expression in square brackets [ ] is 1 for t < tReA and 0 for t > t,,,. This 
result is exactly as previously found’*’ using other derivations. ’ 

A graph of the logarithm of the stop-peak area against t is predicted to be 
linear with slope 4&g; we have confirmed this experimentally in certain casesL7. 
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